Archivio per la categoria ‘Energia’

energy banner

Traduzione a cura di Denis Gobbi

La nuova batteria agli ioni di alluminio può rimpiazzare molte batterie agli ioni di litio e alcaline ancor oggi in uso.

 

 

Gli scienziati dell’Università di Stanford hanno inventato la prima batteria di alluminio ad alte prestazioni. Ha una lunga durabilità, si ricarica velocemente ed è a basso costo. I ricercatori affermano che la nuova tecnologia offre un’alternativa sicura alle batterie commerciali attualmente diffuse.

Abbiamo sviluppato una batteria ricariabile che può rimpiazzare quelle attuali, quali le batterie alcaline ad esempio, dannose per l’ambiente e le batteria agli ioni di litio che occasionalmente possono prendere fuoco. La nostra nuova batteria non prenderà mai fuoco, nemmeno trapanandola.

Hongjie Dai, professore di chimica a Stanford

Dai e i suoi colleghi descrivono la loro nuova creazione in “Una batteria ricaricabile ultravelocemente agli ioni di alluminio” articolo pubblicato il 6 aprile sull’edizione online di Nature.

L’alluminio è stato a lungo un materiale attraente per quanto riguarda l’impiego nelle batterie, sopratutto per il suo basso costo, la bassa infiammabilità e l’alta capacità di immagazzinamento di energia. Per decenni, i ricercatori hanno tentato invano di sviluppare una batteria agli ioni di alluminio che potesse essere commercializzata. La sfida chiave da vincere consisteva nel trovare materiali capaci di produrre voltaggio sufficiente dopo ripetuti cicli di carica e scarica.

 

 

 

Catodi di Grafite

Una batteria agli ioni di alluminio consiste in due elettrodi: un anodo caricato negativamente fatto di alluminio e un catodo caricato positivamente.

Sono stati sperimentati catodi di diversi materiali. Abbiamo accidentalmente scoperto che una soluzione semplice consisteva nell’utilizzo della grafite, in pratica carbonio. Nel nostro studio, abbiamo identificato alcuni tipi di grafene che ci permettono di ottenere ottime prestazioni.

ha detto Dai.

Per il prototipo, la squadra di Stanford ha assemblato l’anodo di alluminio e il catodo di grafite assieme a un liquido ionico elettrolitico all’interno di un sacchetto ricoperto da un polimero flessibile.

L’elettrolita è in pratica un sale liquido a temperatura ambiente, quindi è molto sicuro.

– Ming Gong studente di Stanford co-autore dello studio

Le batterie di alluminio sono più sicure delle convenzionali batterie agli ioni di litio utilizzate in milioni di computer e cellulari al giorno d’oggi, ha aggiunto Dai.

Le batterie agli ioni di litio possono causare rischio d’incendio

Per fare un esempio, egli ha citato la recente decisione presa dalle compagnie aeree United e Delta di bandire i trasporti di stock di batterie agli ioni di litio sugli aerei passeggeri.

Nel nostro studio, abbiamo realizzato video dimostranti la possibilità di trapanare attraverso il rivestimento esterno della nostra batteria e continuare a farlo senza che ci sia rischio di sviluppare incendi. La batterie di litio possono comportarsi in maniera molto più imprevedibile, su un aereo, nella macchina o anche in tasca. A parte il discorso sicurezza, i nostri maggiori risultati però consistono nelle prestazioni di questa nuova batteria d’alluminio.

Per esempio la sua ricaricabilità ultra-veloce. Chi possiede uno smartphone sà che può richiedere ore caricare una batteria agli ioni di litio. Ma la squadra di Stanford ha riportato “tempi di ricarica straordinari” da meno di un minuto con il prototipo di alluminio.

La durabilità è un altro importante fattore, batterie di alluminio sviluppate in altri laboratori morivano abitualmente dopo appena un centinaio di cicli di carica/scarica. La batteria di Stanford è stata capace invece di durare più di 7.500 cicli senza sperimentare nessuna perdita di capacità.

L’autore ha scritto:

Questa è stata la prima volta dove una batteria agli ioni di litio a carica ultra-veloce è stata assemblata e testata con stabilità oltre svariate migliaia di cicli

In comparazione, una batteria agli ioni di litio abitualmente non supera i mille cicli.

Gong ha poi aggiunto:

Un’altra caratteristica della batteria d’alluminio  consiste nella sua flessibilità. Puoi fletterla e piegarla, ha quindi un’impiego potenziale nei dispositivi elettronici flessibili. L’alluminio oltretutto è molto più economico del litio.

 

 

Applicazioni

In aggiunta ai piccoli dispositivi elettronici, le batterie di alluminio potrebbero venire utilizzate per immagazzinare energia rinnovabile nella rete elettrica, ci dice Dai.

Le reti elettriche necessitano di batterie che possiedano un ciclo di vita molto lungo e che possano rapidamente immagazzinare e rilasciare energia. I nostri ultimi dati non ancora pubblicati suggeriscono che una batteria di alluminio possa venire ricaricata decine di migliaia di volte. E’ invece impensabile la costruzione di immense batterie agli ioni di litio da utilizzare allo stesso scopo.

La tecnologia agli ioni di alluminio offre oltretutto un’alternativa amichevole nei confronti dell’ambiente rispetto alle batterie alcaline usa e getta.

Milioni di consumatori utilizzano batteria AA e AAA da 1.5 volt. Le nostre batterie di alluminio generano circa 2 volt di elettricità. Nessuno ha mai raggiunto una cifra simile con l’alluminio.

Ma ulteriori miglioramenti saranno necessari per riuscira ed eguagliare il voltaggio delle batterie agli ioni di litio, aggiunge Dai.

Le nostre batterie producono la metà del voltaggio prodotto da una tipica batteria agli ioni di litio. Ma migliorando il materiale del catodo potremmo eventualmente incrementarlo assieme alla densità dell’energia immagazzinata. Per il resto la nostra batteria possiede già tutto quel che si potrebbe desiderare da essa: economicità, sicurezza, alta velocità di ricarica, flessibilità e un lungo ciclo di vita. Vedo un promettente futuro per questa nostra nuova batteria. E’ alquanto eccitante.

Altri collaboratori esterni dello studio affiliati a Stanford sono stati gli scienziati Mengchang Lin dell’Istituto Tecnologico di Ricerca Industriale di Taiwan, Bingan Lu dell’Università di Hunan e lo studioso Yingpeng Wu. Interni a Stanford citiamo invece Di-Yan Wang, Mingyun Guan, Michael Angell, Changxin Chen e Jiang Yang; nonchè Bing-Joe Hwang dell’Università Nazionale della Scienza e della Tecnologia di Taiwan.

Il principale supporto per la ricerca è stato fornito dal Dipartimento Statunitense per l’Energia, dall’Istituto Tecnologico di Ricerca Industriale di Taiwan, dal Progetto sul Clima e l’Energia Globale di Stanford, dal ” Precourt Institute for Energy” di Stanford e dal Ministero dell’Educazione di Taiwan.

 

Fonte: news.stanford.edu

Se sei soddisfatto dell’articolo e vuoi aiutarmi a migliorare il servizio, o semplicemente offrirmi un caffè, puoi farlo cliccando qui sotto, il tempo che dedico a questa attività è per la mia crescita e la vostra, senza altri fini. Donando mi aiuterete a migliorare continuamente il sito e a mantenere alta la mia motivazione nel farlo. Grazie 🙂

Donazione

Creative Commons License

This work by https://lospiritodeltempo.wordpress.com/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annunci


Traduzione a cura di Denis Gobbi

Questo è l’inizio della fine
di Tom Randall

La gara per l’energia rinnovabile ha raggiunto un punto di svolta. Il mondo ora stà aggiungendo più capacità da fonti rinnovabili ogni anno rispetto a carbone, gas naturale e petrolio combinati assieme. E non c’è un possibile ritorno al passato.

Il sorpasso è avvenuto nel 2013, quando il mondo ha aggiunto 143 gigawatt di energia elettrica rinnovabile rispetto ai 141 gigawatt di nuovi impianti brucianti combustibili fossili, secondo un’analisi presentata Martedì al Summit per la Nuova Finanza Energetica di Bloomberg in New York. l divario continuerà ad accentuarsi, e per il 2030 la capacità aggiunta di energia rinovabile sarà superiore di ben quattro volte a quella da fossile.

“Il sistema elettrico si stà spostando sul pulito” afferma durante il suo discorso Michael Liebreich, fondatore di BNEF.

Nonostante il cambiamento nei prezzi di petrolio e gas ci sarà una crescita dell’energia rinnovabile in un’ordine di magnitudine maggiore rispetto a quello di carbone e gas.

 

 

L’Inizio della Fine

Il prezzo dell’energia eolica e solare continua a precipitare, ed è ora in pari se non più economica dell’energia presente in rete in molte parti del mondo. Il solare, la più giovane fonte di energia oggi nell’insieme, contribuisce per meno dell’1% all’attuale mercato dell’energia  attuale ma seguendo il trend di crescita potrebbe diventare il maggiore del mondo entro il 2050, secondo l’Agenzia Internazionale dell’Energia.

La domanda quindi ora non consiste nel chiedersi SE il mondo transizionerà a fonti di energia pulita, ma quanto tempo ci metterà. Nel grafico in basso, BNEF fà previsioni sui miliardi di dollari che necessitano di essere investiti ogni anno per evitare le più dure conseguenze del cambiamento climatico in atto, aventi come riferimento principale l’aumento maggiore di 2° C per quanto riguarda la temperatura media mondiale.

Le linee blu rappresentano gli investimenti richiesti, in miliardi; le linee rosse mostrano invece quanto viene attualmente speso. Dall’inizio della crisi finanziaria, gli investimenti sono scesi ben al di sotto dell’obiettivo, secondo BNEF.
 
 

Gli Investimenti Necessari a Limitare il Cambiamento Climatico

Una versione precedente di questo articolo è stata presentata allo scenario per il solare nel 2050 di IEA come previsione quando era di fatto uno dei vari scenari possibili. L’IEA non produce nessuna previsione per aspettative specifiche oltre i 5 anni, secondo il suo rappresentante Greg Frost.

Fonte: bloomberg.com

 

Se sei soddisfatto dell’articolo e vuoi aiutarmi a migliorare il servizio, o semplicemente offrirmi un caffè, puoi farlo cliccando qui sotto, il tempo che dedico a questa attività è per la mia crescita e la vostra, senza altri fini. Donando mi aiuterete a migliorare continuamente il sito e a mantenere alta la mia motivazione nel farlo. Grazie 🙂

Donazione

Creative Commons License

This work by https://lospiritodeltempo.wordpress.com/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

energy banner

Traduzione a cura di Denis Gobbi

Un team internazionale di scienziati ha inventato un dispositivo economico in grado di immagazzinare energia solare a livelli di efficienza mai visti prima in questo campo

hydrogen

 

 

Uno dei più grandi problemi dell’energia solare in quanto a rimpiazzo come solida e conveniente alternativa dei combustibili fossili consiste nel cosa fare quando il sole non splende nel cielo. Un team internazionale di scienziati sembra aver trovato una promettente soluzione a questo problema.

Guidati da Michael Graetzel, direttore del Laboratorio di Fotonica e Interfacce al Politecnico Ecole in Svizzera, questa squadra ha creato un dispositivo in grado di catturare energia dal sole e convertirla in idrogeno da essere stoccato per utilizzarlo come carburante o dato in pasto ad una cella combustibile per ricavarne ellettricità immediata.

Chiamato “water-splitter” questo dispositivo viene etichettato come l’ultima grande scoperta nel campo della tecnologia fotovoltaica da Kevin Bullis del MIT’s Technology Review perchè soddisfa tre dei quattro requisiti necessari alla creazione di un congegno pratico. Prima di tutto, è altamente efficiente. E’ infatti costruito con un nuovo tipo di materiale chiamato perovskite, materiale scoperto nel 2009 e capace di assorbire la luce in maniera molto più efficace del silicio: il materiale comunemente usato oggi al suo posto all’interno delle celle fotovoltaiche. Secondo Bullis, può immagazzinare fino al 12,3% dell’energia solare in forma di idrogeno, un dato impressionante dato che i più efficienti convertitori solare-idrogeno si aggirano intorno al 10% di efficienza.

Secondariamente, è economico da produrre in quanto composto solamente da materiali economici. Terzo, questi materiali sono estraibili in quantità, perciò il dispositivo è anche facile da produrre. Sopra alla perovskite, il dispositivo utilizza l’economico nickel e ferro come catalizzatori nei suoi due elettrodi “water-splitter”, uno producente idrogeno mentre l’altro ossigeno quando a contatto con l’acqua.

“Il catalizzatore progettato in lavori precedenti dimostra come l’idrossido di nickel sia un catalizzatore promettente, e aggiungendo il ferro possiamo riuscire a migliorarlo. I ricercatori hanno aggiunto il ferro all’idrossido di nickel formando una struttura a strati, posizionando il catalizzatore sopra una schiuma “porosa”di nickel per icnrementare l’area ove avvengono le reazioni , velocizzandole” ha affermato Bullis.

Il quarto criterio necessario ad un dispositivo per risultare efficace è l’affidabilità, punto su cui sta correntemente lavorando il team. Per ora, il processo mantiene il suo alto livello d’efficienza solo per poche ore prima di cominciare a perderla gradualmente, questo perchè la perovskite si degrada molto più velocemente rispetto al silicio. Ma il team, che include ricercatori da Svizzera, Singapore e Korea, è riuscito fino ad ora ad estendere la sua durata a più di un mese aggiungendo uno strato di carbonio. I risultati sono stati pubblicati sulla rivista Science. Sono ora al lavoro per incrementare ulteriormente questa caratteristica.

Potete vedere il dispositivo in azione qui sotto:

Fonte: technologyreview.com

Se sei soddisfatto dell’articolo e vuoi aiutarmi a migliorare il servizio, o semplicemente offrirmi un caffè, puoi farlo cliccando qui sotto, il tempo che dedico a questa attività è per la mia crescita e la vostra, senza altri fini. Donando mi aiuterete a migliorare continuamente il sito e a mantenere alta la mia motivazione nel farlo. Grazie 🙂

Donazione

Creative Commons License

This work by https://lospiritodeltempo.wordpress.com/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

research banner

Traduzione a cura di Denis Gobbi

Dei ricercatori hanno identificato fattori chiave necessari allo sviluppo di un catalizzatore che permetterà loro di replicare la fotosintesi e convertire l’anidride carbonica in carburante pulito.

leafMolti scienziati hanno speso decenni nel tentativo di replicare il processo della fotosintesi – quella reazione che permette alle piante di convertire il biossido di carbonio, acqua e luce solare nello zucchero che alimenta la loro crescita. Se riuscissimo a replicare una “fotosintesi artificiale”, saremmo essenzialmente in grado di creare in maniera facile ed economica biofuel dall’eccesso di anidride carbonica presente nella nostra atmosfera. E’ stato provato però come questo risulti un traguardo estremamente difficile da raggiungere.

Biparticelle metalliche di oro/rame usate come catalizzatore nella degradazione del biossido di carbonio, una reazione chiave necessaria alla fotosintesi artificiale

Biparticelle metalliche di oro/rame usate come catalizzatore nella degradazione del biossido di carbonio, una reazione chiave necessaria alla fotosintesi artificiale

Ora, scienziati del Lawrence Berkeley National Laboratory negli Stati Uniti hanno raggiunto un importante traguardo, identificando due fattori chiave che dovranno essere considerati nella creazione di un catalizzatore che riduca il biossido di carbonio e aiuti a guidare la sua conversione in zucchero.

Un catalizzatore è essenzialmente una sostanza che velocizza una reazione senza subire nessuna variazione chimica di per sè. Fino ad ora, la ricerca di questo catalizzatore che possa legare selezionatamente ed efficientemente il bioossido di carbonio e le molecole che lo trasformano si è dimostrata estremamente ardua. Per cercar di scoprire di più riguardo i fattori che potrebbero influenzare questo catalizzatore “ideale” il team di ricerca ha creato diversi set di leghe di nanoparticelle bimetalliche di oro-rame.

Queste leghe, tutte con differenti composizioni, sono state testate per cercare di capire quale fosse la più efficace nel degradare il biossido di carbonio e i suoi prodotti intermedi come l’acido carbossilico e il monossido di carbonio.

Quel che hanno scoperto è l’esistenza di due fattori chiave, interconnessi e coinvolti nel determinare l’efficacia di un catalizzatore: gli effetti elettronico e geometrico. L’effetto elettronico si riferisce ai sottili cambiamenti nella composizione superficiale che determinano quanto bene una molecola si legherà al catalizzatore, mentre l’effetto geometrico coinvolge la disposizione degli atomi nel punto di lega.

L'esperto di nanoscienze Peidong Yang possiede una cattedra al "Berkeley Lab, UC Berkeley and the Kavli Energy NanoSciences Institute" di Berkeley

L’esperto di nanoscienze Peidong Yang possiede una cattedra al “Berkeley Lab, UC Berkeley and the Kavli Energy NanoSciences Institute” di Berkeley

“Agendo sinergisticamente, gli effetti elettronico e geometrico determinano la forza legante della reazione intermediatrice e conseguentemente la selettività ed efficienza catalitica nella riduzione elettrochimica del biossido di carbonio.” ha affermato in un rilascio alla stampa Peidong Yang, il chimico che ha guidato lo studio. “In futuro, il design di un buon catalizzatore dotato di una buona attività e selettività per la riduzione del biossido di carbonio richiederà l’attento bilanciamento di questi due effetti, come ha rilevato il nostro studio.”

Usando queste informazioni, possono ora cominciare a creare un catalizzatore che li aiuterà a trasformare il sogno della fotosintesi artificiale in realtà.

Il team crede che le nanoparticelle possano creare il catalizzatore ideale per via dei loro vantaggiosi rapporti superficie/volume e superficie/massa; combinandoli insieme potranno sbloccare potenziali ancor più grandi.

“Con queste leghe, crediamo di poter regolare la forza degli intermediatori sulla superficie del catalizzatore per potenziare l’efficacia della reazione che ci permetterà di ridurre il biossido di carbonio.” ha detto Yang.

“Le nanoparticelle costituiscono una piattaforma ideale per lo studio di questa dinamica perchè, tramite appropriati processi di sintesi, possiamo avere accesso ad una grande varietà di composizioni, dimensioni e forme, donandoci una comprensione più profonda della performance di un catalizzatore tramite un preciso controllo dei siti attivi.”

Utilizzando i benefici delle nanoparticelle combinate con la scoperta dei fattori chiave che determinano l’efficacia di un catalizzatore, Yang crede che la strada per miglioramenti verso l’ottenimento di una fotosintesi artificiale sia ormai stata tracciata.

Fonte: nature.com

Se sei soddisfatto dell’articolo e vuoi aiutarmi a migliorare il servizio, o semplicemente offrirmi un caffè, puoi farlo cliccando qui sotto, il tempo che dedico a questa attività è per la mia crescita e la vostra, senza altri fini. Donando mi aiuterete a migliorare continuamente il sito e a mantenere alta la mia motivazione nel farlo. Grazie 🙂

Donazione

Creative Commons License

This work by https://lospiritodeltempo.wordpress.com/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Traduzione a cura di Denis Gobbi

La regione più ventosa della Germania, Schleswig-Holstein, raggiungerà probabilmente l’autosufficienza energetica da rinnovabili quest’anno. La sua produzione elettrica sarà in grado di soddisfare il 100% del suo consumo.  Schleswig-Holstein ha in progetto di raggiungere fino al 300% di energia generata con rinnovabili. Quest’area per la maggior parte rurale è connessa in una rete che gli permette di vendere gli eccessi di energia ed eventualmente acquistarne da fonti convenzionali quando il vento non è sufficiente a soddisfare il consumo in toto. La piccola regione ha circa 7’000 impiegati nel settore eolico e il costruttore di turbine Vestas ha qui i suoi stabilimenti. Un report di un’associazione eolica tedesca stima per il 2030 una produzione elettrica proveniente da questa fonte pari a 25’000MW su area marina e 4’000/6’000MW su terraferma. L’energia eolica fà così parte della cultura di questa regione che non stupisce la presenza di un programma di Master in Ingegneria del Vento. (La regione in questione confina con la Danimarca a nord ed è situata tra il Mare del Nord ed il Mar Baltico.)

 

Schleswig-Holstein via Shutterstock

 

 

Già 8 anni fà, il 30% dell’energia della regione veniva prodotta tramite energia energia eolica,  i progressi sono stati enormi.

Arrivare al 100% di energia rinnovabile è un traguardo enorme, ma non sarebbe il primo in Germania. Il villaggio di Feldheim produce il 300% dell’energia che consuma da rinnovabili, principalmente  eolico e biogas. (Migliaia di visitatori vi si recano ogni anno per ammirarne le verdi tecnologie.)

Vi sono più di 190 siti di energia pulita in Germania, così tanti che la Guida alle Destinazioni Verdi per turisti è andata in sold-out alla prima edizione. Sarà curioso vedere quanti turisti anche Schleswig-Holstein riuscirà prossimamente ad attirare.

 

Fonte: cleantechnica.com

Licenza Creative Commons

Questo opera è distribuito con licenza Creative Commons Attribuzione – Non commerciale – Condividi allo stesso modo 3.0 Italia.